Monocular LSD-SLAM Integration within AR System

نویسندگان

  • Markus Höll
  • Vincent Lepetit
چکیده

In this paper, we cover the process of integrating Large-Scale Direct Simultaneous Localization and Mapping (LSD-SLAM) [1] algorithm into our existing AR stereo engine, developed for our modified ”Augmented Reality Oculus Rift”. With that, we are able to track one of our realworld cameras which are mounted on the rift, within a complete unknown environment. This makes it possible to achieve a constant and full augmentation, synchronizing our 3D movement (x, y, z) in both worlds, the real world and the virtual world. The development for the basic AR setup using the Oculus Rift DK1 and two fisheye cameras is fully documented in our previous paper [2]. After an introduction to image-based registration, we detail the LSD-SLAM algorithm and document our code implementing our integration. The AR stereo engine with Oculus Rift support can be accessed via the GIT repository https: // github. com/ MaXvanHeLL/ ARift. git and the modified LSD-SLAM project used for the integration is available here https: // github. com/ MaXvanHeLL/ LSD-SLAM. git .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methodology to analyze the accuracy of 3D objects reconstructed with collaborative robot based monocular LSD-SLAM

SLAM systems are mainly applied for robot navigation while research on feasibility for motion planning with SLAM for tasks like bin-picking, is scarce. Accurate 3D reconstruction of objects and environments is important for planning motion and computing optimal gripper pose to grasp objects. In this work, we propose the methods to analyze the accuracy of a 3D environment reconstructed using a L...

متن کامل

Fast Line Description for Line-based SLAM

Simultaneous localization and mapping (SLAM) is a technique to simultaneously perform mapping of environments and localization of a camera in real-time. Most existing monocular vision based SLAM techniques use point features as landmarks. However, images of artificial environments with little texture often contain many line segments, whereas few point features can be localized in such a scene. ...

متن کامل

Closed-form Solution for IMU based LSD-SLAM Point Cloud Conversion into the Scaled 3D World Environment

SLAM is a very popular research stream in computer vision and robotics nowadays. For more effective SLAM implementation it is necessary to have reliable information about the environment, also the data should be aligned and scaled according to the real world coordinate system. Monocular SLAM research is an attractive sub-stream, because of the low equipment cost, size and weight. In this paper ...

متن کامل

LSD-SLAM: Large-Scale Direct Monocular SLAM

We propose a direct (feature-less) monocular SLAM algorithm which, in contrast to current state-of-the-art regarding direct methods, allows to build large-scale, consistent maps of the environment. Along with highly accurate pose estimation based on direct image alignment, the 3D environment is reconstructed in real-time as pose-graph of keyframes with associated semi-dense depth maps. These ar...

متن کامل

A Multi-Sensorial Simultaneous Localization and Mapping (SLAM) System for Low-Cost Micro Aerial Vehicles in GPS-Denied Environments

One of the main challenges of aerial robots navigation in indoor or GPS-denied environments is position estimation using only the available onboard sensors. This paper presents a Simultaneous Localization and Mapping (SLAM) system that remotely calculates the pose and environment map of different low-cost commercial aerial platforms, whose onboard computing capacity is usually limited. The prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1702.02514  شماره 

صفحات  -

تاریخ انتشار 2017